Request Quote

X-ray Fluorescence

EDXRF Spectrometry - Theory and Instrumentation

X-ray fluorescence (XRF) spectroscopy is increasingly the analytical tool of choice for the direct measurement of the concentration of atomic elements in a wide range of materials. From solids and powders to liquids and thin films, XRF has become an ever more powerful quantitative technique thanks to ongoing evolutionary developments and revolutionary breakthroughs in X-ray source, optic and detector technologies.

From the introduction of commercial wavelength dispersive XRF spectrometers in the mid-1950s, to the development of energy dispersive X-ray fluorescence (EDXRF) instruments in the early 1970’s, the increasing availability of affordable computational power was critical to the desirability and acceptance of the technique. With the widespread availability and use of the personal computer (PC) as the industry standard platform in the mid-1980s, X-ray fluorescence spectroscopy became a simpler and lower cost-of-ownership alternative to earlier atomic spectroscopy analytical techniques.

X-ray fluorescence theory

In X-ray fluorescence (XRF), an electron can be ejected from its atomic orbital by the absorption of a light wave (photon) of sufficient energy. The energy of the photon (hν) must be greater than the energy with which the electron is bound to the nucleus of the atom. When an inner orbital electron is ejected from an atom (middle image), an electron from a higher energy level orbital will be transferred to the lower energy level orbital. During this transition a photon maybe emitted from the atom (bottom image). This fluorescent light is called the characteristic X-ray of the element. The energy of the emitted photon will be equal to the difference in energies between the two orbitals occupied by the electron making the transition. Because the energy difference between two specific orbital shells, in a given element, is always the same (i.e. characteristic of a particular element), the photon emitted when an electron moves between these two levels, will always have the same energy. Therefore, by determining the energy (wavelength) of the X-ray light (photon) emitted by a particular element, it is possible to determine the identity of that element.

For a particular energy (wavelength) of fluorescent light emitted by an element, the number of photons per unit time (generally referred to as peak intensity or count rate) is related to the amount of that analyte in the sample. The counting rates for all detectable elements within a sample are usually calculated by counting, for a set amount of time, the number of photons that are detected for the various analytes’ characteristic X-ray energy lines. It is important to note that these fluorescent lines are actually observed as peaks with a semi-Gaussian distribution because of the imperfect resolution of modern detector technology. Therefore, by determining the energy of the X-ray peaks in a sample’s spectrum, and by calculating the count rate of the various elemental peaks, it is possible to qualitatively establish the elemental composition of the samples and to quantitatively measure the concentration of these elements.

From the introduction of commercial wavelength dispersive XRF spectrometers in the mid-1950s, to the development of energy dispersive X-ray fluorescence (EDXRF) instruments in the early 1970’s, the increasing availability of affordable computational power was critical to the desirability and acceptance of the technique. With the widespread availability and use of the personal computer (PC) as the industry standard platform in the mid-1980s, X-ray fluorescence spectroscopy became a simpler and lower cost-of-ownership alternative to earlier atomic spectroscopy analytical techniques.

X-ray tube excitation

Like the formerly common vacuum tubes, X-ray tubes are comprised of a cathode – which emits electrons into the vacuum – and an anode to collect the electrons, thus establishing a flow of electrical current through the tube. A high voltage power source, for example 4 to 150 kilovolts (kV), is connected across cathode and anode to accelerate the electrons to impact the anode. The X-ray spectral output of an X-ray tube, which includes both characteristic lines from the anode material and Bremsstrahlung radiation, depends on the anode material and the accelerating voltage.

From the introduction of commercial wavelength dispersive XRF spectrometers in the mid-1950s, to the development of energy dispersive X-ray fluorescence (EDXRF) instruments in the early 1970’s, the increasing availability of affordable computational power was critical to the desirability and acceptance of the technique. With the widespread availability and use of the personal computer (PC) as the industry standard platform in the mid-1980s, X-ray fluorescence spectroscopy became a simpler and lower cost-of-ownership alternative to earlier atomic spectroscopy analytical techniques.

PIN-diode EDXRF detectors

PIN-diode is a diode with a wide, lightly doped ‘near’ intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor regions. Peltier cooled silicon PIN photodiodes are commonly employed as high resolution energy dispersive detectors for X-ray fluorescence (XRF)spectrometry. The detection efficiency is a function of the thickness of the silicon wafer; for example, a wafer thickness of 300 microns provides nearly 100% detection efficiency at 10 KeV but only about 1% efficiency at 150 KeV. While very robust in nature, PIN-diode EDXRF detectors can require service or repair whenever the vacuum can is compromised, the Peltier stack stops cooling correctly, the X-ray window is damaged or contaminated, or the PIN-diode degrades due to radiation damage.

SDD EDXRF detectors

A new category of Peltier cooled X-ray detectors, silicon drift detectors (SDD), are chiefly used in X-ray spectrometry (EDXRF and MDXRF) as well as electron microscopy (EDX). This technology has become very popular because their characteristics, compared with other x-ray detectors, include very high count rates and comparatively high energy resolution. Like other solid state x-ray detectors, silicon drift detectors measure the energy of an incoming photon by the amount of ionization it produces in the detector material. The major distinguishing feature of an SDD is a transversal field generated by a series of ring electrodes that forces charge carriers to ‘drift’ to a small collection electrode. This ‘drift’ concept of the SDD allows for throughput beyond 100,000 counts per second (CPS). Current generation SDD EDXRF detectors, with the field effect transistor (FET) moved out of the radiation path, are far more reliable than the first generation devices and represent the current state-of-the-art in conventional EDXRF detector technology.

Pulse processor and multi channel analyzer

Pulses generated by high resolution X-ray detector are processed by pulse-shaping amplifiers (pulse processor). As it takes time for the amplifier to shape the pulse for optimum resolution, there is necessarily a trade-off between resolution and count-rate. Long processing times deliver better resolution but can result in “pulse pile-up” in which the pulses from successive photons overlap. Current state-of-the-art digital pulse processing techniques rely on linear filtering methods which attempt to reduce the pulse length to improve detector performance. However the inability to resolve closely spaced pulses means pulse pile-up remains a problem. This results in limited detector throughput, decreased spectral accuracy and energy resolution, increased spectral noise, and detector dead time. In EDXRF, the multichannel analyzer (MCA) is the component used to store information from the pulse processor. Each channel corresponds to a small energy increment and each pulse from the detector is stored in the appropriate channel according to the amplitude of the pulse (that is, the photon energy).

Applications

EDXRF spectrometers are the elemental analysis tool of choice, for many applications, in that they are smaller, simpler in design and cost less to operate than other technologies like inductively coupled plasma optical emission spectroscopy (ICP-OES) and atomic absorption (AA) or atomic fluorescence (AF) spectroscopy. Examples of some common EDXRF applications are: Cement and raw meal: sulfur, iron, calcium, silicon, aluminum, magnesium, etc; Kaolin clay: titanium, iron, aluminum, silicon, etc; Granular catalysts: palladium, platinum, rhodium, ruthenium, etc; Ores: copper, tin, gold, silver, etc; Cement and mortar fillers: sulfur in ash; Gasoline, diesel and RFG: sulfur, manganese, lead, etc; Residual gas oils: sulfur, chlorine, vanadium, nickel, etc; Secondary oil: chlorine, etc; Kerosine, naphtha: sulfur, etc; Crude oil and bunker fuels: sulfur, vanadium, nickel, etc; Plating, pickling & pre-treatment baths: gold, copper, rhodium, platinum, nickel, sulfates, phosphates, chlorides, etc; Acetic acid: magnesium, cobalt and bromine; Terephthalic acid (TPA): cobalt, manganese, iron, etc; Dimethyl terephthalate (DMT): heavy metals; PVC copolymer solutions: chlorine; Photographic emulsion: silver; Clay: metals and non-metals; Waste and effluent streams: RCRA metals, chlorides, phosphates, etc; Food, pet food and other animal feed: potassium, phosphorus and chlorine; Cosmetics: zinc, titanium, calcium, manganese, iron, silicon, phosphorus, sulfur, aluminum, and sodium; Wood treatment: CCA, Penta, ACQ, ACZA, phosphorus-based fire retardants, copper naphthanate, zinc napthanate, TBTO, IPBC and combinations of these; Antacids: calcium; and Toothpaste: phosphorus and tin.

Scroll to Top